Преобразование энергии из одного вида в другой. Преобразователь электрической энергии Какие виды энергии преобразуют в электрическую

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, – невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля - сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Эту цепочку в которой происходит преобразование энергии из одной формы в другую можно было бы продолжать бесконечно.

Энергия (гр. energeia – деятельность) – источник жизни, основа и средство управления всеми природными и общественными системами. Энергия – одно из основных свойств материи – способность производить работу; в широком смысле – сила.

Очевидно, что законы превращения энергии проявляются во всех процессах, происходящих в природе и обществе, включая экономику, культуру, науку и искусство. Энергия – движущая сила мироздания. Компонент энергии есть во всем: в материи, информации, произведениях искусства и человеческом духе.

Фундаментальные законы термодинамики имеют универсальное значение в природе. Любая естественная или искусственная система, не подчиняющаяся этим законам, обречена на гибель. Но для управления энергетическими процессами, прежде всего, необходимо понять роль энергии в экологических системах. Знание закономерностей энергетических потоков в природных экосистемах поможет предсказать будущее антропогенных систем.

Ясно, что будущее зависит от объединения энергетики, экономики и экологии (трех «э») в единую систему взаимосвязанных явлений и процессов. Изучение таких систем требует системного и энергетического подхода, поскольку энергия – это тот фундамент, который позволяет природные ценности перевести в разряд экономических, а экономические – оценивать с позиций экологии.

Природные экологические системы могут служить моделью общих принципов управления, основанного на энергетических процессах. Эти системы существуют на Земле много миллионов лет. Изучив природные системы, можно познать многие законы, справедливые для антропогенных экосистем.

Пища, созданная в результате фотосинтетической деятельности зеленых растений, содержит потенциальную энергию химических связей, которая при потреблении ее животными организмами превращается в другие формы энергии.

Животные, поглощая энергию пищи, большую ее часть переводят в теплоту, а меньшую – в химическую потенциальную энергию.

Энергия существует во многих формах и видах: солнечная, тепловая, химическая, электрическая, атомная, энергия ветра, воды и др . Формы энергии различны по способности производить полезную работу. Энергия слабого ветра, прибоя, маломощных геотермальных источников может произвести небольшое количество работы. Концентрированные формы энергии (нефть, уголь и др.) обладают высоким рабочим потенциалом. Энергия солнечного света по сравнению с энергией ископаемого топлива обладает низкой работоспособностью, а по сравнению с рассеянной низкотемпературной теплотой – высокой. Качество энергии, сконцентрированной в биомассе растений, животных, топливе, отличается от качества рассеянной тепловой энергии.

Качество энергии характеризует ее способность совершать работу, т.е. ее эксергию (гр. ex – высшая степень, ergon – работа).

Эксергия – это максимальная работа, которую совершает термодинамическая система при переходе из данного состояния в состояние физического равновесия с окружающей средой. Эксергией называют полезную долю участвующей в каком-то процессе энергии, значение которой определяется степенью отличия какого-то параметра системы от его значения в окружающей среде.

Для создания энергии более высокого качества необходимы затраты энергии более низкого качества.


Поток солнечной энергии, вовлекаемый в цепь превращений в биосфере, образует порядок и повышает эксергию некоторой части энергии.

Чтобы образовалась 1 ккал биомассы растения, требуется приблизительно в 10 раз меньше килокалорий солнечного света, чем для образования 1 ккал биомассы растительноядного животного. Единица биомассы животного способна совершать работу в соответствующее число раз выше, чем такая же биомасса растений.

В сущности, качество энергии измеряется длиной пути, пройденного ею от Солнца . Энергия высокой концентрации совершает больший объем работы, управляет большим числом процессов. Чтобы сконцентрировать энергию, разные виды ее должны взаимодействовать.

При разработке будущей стратегии в стране и в мире в целом необходимо руководствоваться важнейшим принципом – использовать энергию такого качества, которое соответствует выполняемой работе . Большинство достижений экономики основано на применении многих скрытых косвенных интеллектуальных или дополнительных форм энергии, которые часто не учитываются при оценках стоимости продукции.

Необходимо разрабатывать меры по сохранению, как количества, так и качества энергии.

Сохранение качества энергии – это задача устранения ненужной деградации энергии, ее потерь. Улавливание теплоты с помощью тепловых насосов при производстве электрической энергии – пример энэргосберегающих технологий, препятствующих рассеиванию и потерям энергии. Снижение температуры – энэргоразрушительный процесс, а рециркуляция теплоты – энэргосберегающий.

Энергия – наиболее удобная основа для классификации экосистем. Различают четыре фундаментальных типа экосистем:

1) движимые Солнцем, малосубсидируемые;

2) движимые Солнцем, субсидируемые другими естественными источниками;

3) движимые Солнцем и субсидируемые человеком;

4) движимые топливом.

По мере углубления энергетического кризиса и роста цен на горючее люди, видимо, будут больше интересоваться использованием солнечной энергии и разрабатывать технологии ее концентрации. Возможно, в будущем и возникнет новый тип экосистем – город, движимый энергией не только топлива, но и Солнца.

В своем развитии человеческое общество прошло через все четыре типа описанных выше экосистем.

Чистая энергия это энергия на выходе из системы в виде продукции после вычета всех энергозатрат на ее преобразования.

Энергию обратной связи (Э ш), необходимую для поддержания выхода, иногда называют энергетическим штрафом .

Промышленные предприятия, объекты энергетики, связи и транс-юрт являются основными источниками энергетического загрязнения промышленных регионов, городской среды, жилищ и природных зон.

К энергетическим загрязнениям относят:

ü вибрационное и акустическое воздействия;

ü электромагнитные поля и излучения;

ü воздействия радионуклидов и ионизирующих излучений.

При прохождении тока в проводнике с сопротивлением происходит столкновение электрически заряженных частиц с ионами и молекулами вещества. При этом кинетическая энергия движущихся частиц передается ионам и молекулам, что и приводит к нагреванию проводника.

Э.Х. Ленц (1804-1865).

Скорость рассмотренного преобразования электрической энергии в тепловую характеризуется мощностью

имея в виду, что получаем:

Количество электрической энергии, переходящей в тепловую за время t,

Так как в системе СИ единицей энергии и единицей количества тепла является джоуль, то выделенное током в сопротивлении тепло

Полученная зависимость была установлена опытным путем в 1844 г. русским академиком Э. X. Ленцем и одновременно английским ученым Джоулем и называется законом Джоуля - Ленца: количество тепла, выделенное током в проводнике, пропорционально квадрату силы тока сопротивлению проводника и времени прохождения тока.

Преобразование электрической энергии в тепловую в электрических печах и различных нагревательных приборах имеет полезное применение. В электрических машинах и аппаратах преобразование электрической энергии в тепловую является непроизводительным расходом энергии т. е. потерями энергии, снижающими их к. п. д. Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку; при перегрузке повышение температуры может вызвать повреждение изоляции или сокрщцение срока службы установки.

Генераторные установки вырабатывают однофазный или трехфазный ток промышленный частоты, а химические источники - постоянный. При этом на практике довольно часто возникают ситуации, когда одного вида электроэнергии недостаточно для работы определенных устройств и требуется выполнять ее преобразование.

С этой целью промышленностью выпускается большое количество электротехнических устройств, которые оперируют с разными параметрами электрической энергии, превращая их из одного вида в другой с различными напряжениями, частотой, количеством фаз и формами сигналов. По выполняемым функциям они подразделяются на устройства преобразования:

    простые;

    с возможностью регулирования выходного сигнала;

    наделенные способностью стабилизации.

Способы классификации

По характеру выполняемых операций преобразователи делят на устройства:

    выпрямления;

    инвертирования в один или несколько этапов;

    изменения частоты сигнала;

    преобразования числа фаз электрической системы;

    модификации вида напряжения.

По способам управления происходящих алгоритмов регулируемые преобразователи работают на:

    импульсном принципе, используемом в схемах постоянного тока;

    фазовом методе, применяемом в цепях гармоничных колебаний.

Самые простые конструкции преобразователей могут не наделяться функцией управления.

Все устройства преобразования могут использовать один из следующих видов электрической схемы:

    мостовую;

    нулевую;

    на основе трансформатора или без него;

    с одной, двумя, тремя или несколькими фазами.

Выпрямительные устройства

Это наиболее распространенный и старый класс преобразователей, позволяющих получать выпрямленный или стабилизированный постоянный ток из переменного синусоидального обычно промышленной частоты.

Раритетные экспонаты

Маломощные устройства

Буквально несколько десятилетий назад в радиотехнических и электронных устройствах еще использовались селеновые конструкции и ламповые на основе вакуума приборы.


В основе подобных устройств использовался принцип выпрямления тока одним единичным элементом из селеновой пластины. Их последовательно собирали в единую конструкцию через монтажные переходники. Чем выше требовалось напряжение для выпрямления, тем большее количество таких элементов использовалось. Они не отличались большими мощностями и выдерживали нагрузку в несколько десятков миллиампер.


У ламповых выпрямителей внутри герметичного стеклянного корпуса создавался вакуум. В нем располагались электроды: анод и катод с нитью накала, обеспечивающей протекание термоэлектронной эмиссии.

Подобный ламповые приборы обеспечивали питание постоянным током для различных схем радиоприемников и телевизоров вплоть до конца прошлого столетия.

Игнитроны - мощные устройства

В промышленных устройствах раньше широко использовались ионные ртутные приборы с анодом и катодом, работающие по принципу управляемого дугового заряда. Они применялись там, где требовалось оперировать нагрузкой постоянного тока с силой в сотни ампер при выпрямленном напряжении до пяти киловольт включительно.


Для протекания тока от катода в направлении анода использовался поток электронов. Он создавался за счет дугового разряда, вызываемого на одном или нескольких участках катода, называемых светящимися катодными пятнами. Они формировались при включении вспомогательной дуги от поджигающего электрода до момента зажигания основной.

Для этого создавались кратковременные импульсы в несколько миллисекунд с силой тока до десятков ампер. Изменение формы и силы импульсов позволяло управлять работой игнитрона.

Эта конструкция обеспечивала хорошее поддержание напряжения при выпрямлении и довольно высокий КПД. Но, техническая сложность конструкции и трудности эксплуатации привели к отказу от ее использования.

Полупроводниковые приборы

Диоды

В основу их работы положен принцип проводимости тока в одну сторону за счет свойств p-n перехода, образованного контактами между полупроводниковыми материалами или металлом и полупроводником.


Диоды пропускают ток только определенного направления, а при прохождении через них переменной синусоидальной гармоники срезают одну полуволну и за счет этого широко используются как выпрямительные устройства.

Современные диоды выпускаются очень широким ассортиментом и наделяются разнообразными техническими характеристиками.

Тиристоры

В составе тиристора используется четыре слоя проводимости, образующих более сложную полупроводниковую структуру, чем у диода с тремя последовательно соединенными p-n переходами J1, J2, J3. Контакты с внешним слоем «p» и «n» используются в качестве анода и катода, а с внутренним - как управляющий электрод УЭ, который применяется для включения тиристора в работу и выполнения регулирования.


Выпрямление синусоидальной гармоники производится по тому же принципу, как и у полупроводникового диода. Но, для работы тиристора необходимо учесть определенную особенность - структура его внутренних переходов должна быть открыта для прохождения электрических зарядов, а не закрыта.

Это осуществляется пропусканием тока определенной полярности через управляющий электрод. На картинке ниже показаны способы открытия тиристора, используемые заодно для регулировки величины пропускаемого тока в разные моменты времени.


При подаче тока через УЭ в момент перехода синусоиды через нулевое значение создается максимальная величина, которая постепенно уменьшается в точках «1», «2», «3».

Таким способом происходит выпрямление тока в комплексе с регулированием тиристором. Аналогичным образом работают симисторы и мощные полевые MOSFET и/или AGBT транзисторы в силовых цепях. Но, они не выполняют функцию выпрямления тока, пропуская его в обоих направлениях. Поэтому в их схемах управления используется дополнительный алгоритм прерывания импульса.

Преобразователи постоянного тока

Эти конструкции осуществляют обратную выпрямителям операцию. Они применяются для выработки переменного синусоидального тока из постоянного, получаемого от химических источников тока.

Раритетные разработки

С конца XIX века для преобразования постоянного напряжения в переменное использовались электрические машинные конструкции. В их состав входил электродвигатель постоянного тока, получавший энергию от аккумулятора или комплекта батарей и генератор переменного напряжения, якорь которого вращался от привода двигателя.

В отдельных устройствах обмотка генератора наматывалась прямо на общем роторе двигателя. При этом способе не только меняли форму сигнала, но и, как правило, увеличивали амплитуду напряжения или частоту.

Если на якоре генератора намотаны три разнесенные по 120 градусов обмотки, то с его помощью получали уже равноценное симметричное трехфазное напряжение.


Умформеры широко использовались вплоть до 70-х годов для радиоламповых устройств, оборудования троллейбусов, трамваев, электровозов до массового внедрения полупроводниковых элементов.

Инверторные преобразователи

Принцип работы

За основу рассмотрения возьмем схему проверки тиристора КУ202 от батарейки и лампочки.


В цепь подачи плюсового потенциала батарейки на анод врезан нормально замкнутый контакт кнопки SA1 и лампочка накаливания малой мощности. Подключение управляющего электрода выполнено через токоограничивающий резистор и открытый контакт кнопки SA2. Катод соединен жестко с минусом батарейки.

Если в момент времени t1 нажать кнопку SA2, то по цепочке управляющего электрода на катод потечет ток, который откроет тиристор и лампочка, включенная в анодную ветвь, загорится. Она, благодаря конструктивной особенности этого тиристора, будет продолжать гореть даже при размыкании контакта SA2.

Теперь в момент времени t2 нажмем на кнопку SA1. Цепь питания анода обесточится, а лампочка погаснет из-за того, что прохождение тока через нее прекратится.

На графике представленной картинки видно, что внутри промежутка времени t1÷t2 проходил постоянный ток. Если переключения кнопок выполнять очень быстро, то можно сформировать с положительным знаком. Точно так же можно создать отрицательный импульс. С этой целью достаточно немного изменить схему для прохождения тока противоположного направления.

Последовательность двух импульсов положительного и отрицательного значения создает форму сигнала, называемого в электротехнике «меандр». Его прямоугольная форма довольно грубо напоминает синусоиду с двумя полуволнами противоположных знаков.

Если в рассмотренной схеме заменить кнопки SA1 и SA2 контактами реле или транзисторными ключами и коммутировать их по определенному алгоритму, то можно будет в автоматическом режиме создавать ток с формой меандра и подгонять его под определенную частоту, скважность, период. Такими переключениями занимается специальная электронная схема управления.

Структурная схема силовой части

В качестве примера рассмотрим наиболее простую систему первичных цепей инвертора, работающего по мостовой схеме.


Здесь вместо тиристора формированием прямоугольного импульса занимаются специально подобранные полевые транзисторные ключи. В диагональ их моста включено сопротивление нагрузки Rн. Силовые электроды каждого транзистора «исток» и «сток» встречно соединены с шунтирующими диодами, а на «затвор» подключены выходные контакты схемы управления.

За счет автоматической работы управляющих сигналов на нагрузку выдаются различные по длительности и знаку импульсы напряжения. Их очередность и характеристики подогнаны под оптимальные параметры выходного сигнала.

Под действием приложенных напряжений на диагональном сопротивлении с учетом переходных процессов возникает ток, форма которого уже больше приближена к синусоиде, чем у меандра.

Сложности технической реализации

Для хорошего функционирования силовой схемы инверторов необходимо обеспечивать надежную работу системы управления, которая основана на коммутации ключей. Они наделяются свойствами двусторонней проводимости и формируются за счет шунтирования транзисторов подключением обратных диодов.

С целью регулирования амплитуды выходного напряжения чаще всего используется за счет выбора площади импульса каждой полуволны методом управления ее длительностью. Кроме этого способа встречаются устройства, работающие на амплитудном импульсном преобразовании.

В процессе формирования выходных цепей напряжения возникает нарушение симметрии полуволн, которое отрицательно сказывается на работе индуктивных нагрузок. Наиболее характерно это заметно у трансформаторов.

При работе системы управления задается алгоритм формирования ключей силовой цепи, включающий три этапа:

1. прямой;

2. короткозамкнутый;

3. инверсный.

На нагрузке возможны появления не только пульсирующих, но и изменяющихся по направлению токов, которые создают дополнительные помехи на зажимах источника.

Типовые конструкции

Среди множества различных технологических решений, используемых для создания инверторов, распространены три схемы, рассматриваемые по степени увеличения сложности:

1. мостовая без трансформатора;

2. с нулевым выводом трансформатора;

3. мостовая с трансформатором.

Формы выходных сигналов

Инверторы создаются для выдачи напряжений:

    прямоугольного вида;

    трапеции;

    ступенчатых чередующихся сигналов;

    синусоид.

Преобразователи фаз

Промышленность выпускает электродвигатели для работы в конкретных условиях эксплуатации с учетом питания от определенных видов источников. Однако, на практике возникают ситуации, когда по разным причинам необходимо подключить трехфазный асинхронный двигатель в однофазную сеть. Для этого разработаны различные электрические схемы и устройства.

Энергозатратные технологии

Статор трехфазного асинхронного двигателя включает в свой состав три разнесенные по 120 градусов навитые определенным образом обмотки, каждая из которых при подаче в нее тока своей фазы напряжения создает собственное вращающееся магнитное поле. Направление токов выбрано так, что их магнитные потоки дополняют друг друга, обеспечивая взаимное действие для вращения ротора.

Когда имеется всего одна фаза напряжения питания для такого двигателя, то возникает необходимость сформировать из нее три цепочки тока, каждая из которых тоже смещена на 120 градусов. Иначе вращение не получится или будет неполноценным.

В электротехнике существует два простых способа поворота вектора тока относительно напряжения методом подключения на:

1. индуктивную нагрузку, когда ток начинает отставать от напряжения на 90 градусов;

2. емкость для создания опережения тока на 90 градусов.


На приведенной картинке показано, что от одной фазы напряжения Ua можно получить ток, сдвинутый по углу не на 120, а только на 90 градусов вперед или назад. Причем для этого потребуется еще подбирать номиналы конденсаторов и дросселей чтобы создать допустимый режим работы двигателя.

В практических решениях подобных схем чаще всего останавливались на конденсаторном способе без использования индуктивных сопротивлений. Для этого в одну обмотку подавали напряжение фазы питания без каких-либо преобразований, а в другую - сдвинутую конденсаторами. В результате создавался приемлемый крутящий момент для двигателя.

Но чтобы раскрутить ротор требовалось создать дополнительный крутящий момент подключением третьей обмотки через пусковые конденсаторы. Использовать их для постоянной работы невозможно из-за образования больших токов в пусковой схеме, которые быстро создают повышенный нагрев. Поэтому эта цепочка включалась кратковременно для набора момента инерции вращения ротора.

Подобные схемы проще реализовывались благодаря простому формированию конденсаторных батарей определенных номиналов из отдельных доступных элементов. Дроссели же необходимо было самостоятельно рассчитывать и наматывать, что затруднительно выполнять не только в домашних условиях.

Однако, наилучшие условия для работы двигателя создавались при комплексном включении конденсатора и дросселя в разные фазы с подбором направлений токов в обмотках и применением токогасящих резисторов. При таком способе потери мощности двигателя составляли до 30%. Однако, конструкции подобных преобразователей были экономически не выгодны потому, что они потребляли для работы больше электроэнергии, чем сам двигатель.

Конденсаторная схема запуска тоже потребляет повышенную норму электричества, но в меньшей степени. К тому же, двигатель, подключенный в ее схему, способен выработать мощность, незначительно превышающую 50% от той, которая создавалась при нормальном трехфазном питании.

Из-за сложностей подключения трехфазного двигателя в цепь однофазного питания и больших потерь электроэнергии и выходной мощности такие преобразователи показали свою низкую эффективность, хотя продолжают работать в отдельных установках и станках.

Инверторные устройства

Полупроводниковые элементы позволили создать более рациональные преобразователи фаз, выпускаемые на промышленной основе. Их конструкции обычно предназначены для эксплуатации в трехфазных схемах, но они могут быть созданы для работы и с большим количеством разнесенных на разные углы цепочек.

При работе преобразователей, питаемых от одной фазы, выполняется следующая очередность технологических операций:

1. выпрямление однофазного напряжения диодной сборкой;

2. сглаживание пульсаций схемой стабилизации;

3. преобразование постоянного напряжения в трехфазное за счет метода инвертирования.

При этом силовая схема может состоять из трех однофазных частей, работающих автономно, как рассмотрено ранее, или одной общей, собранной, например, по системе автономного трехфазного инверторного преобразования с использованием нулевого общего провода.


Здесь на каждую нагрузку фазы работают свои пары полупроводниковых элементов, которые управляются от общей системы управления. Они создают синусоидальные токи в фазах сопротивлений Ra, Rb, Rc, которые подключены к общей схеме питания через нулевой провод. В нем происходит сложение векторов токов от каждой нагрузки.

Качество приближения выходного сигнала к виду чистой синусоиды зависит от общей конструкции и сложности используемой схемы.

Преобразователи частоты

На основе инверторов создаются устройства, позволяющие в широких пределах изменять частоту синусоидальных колебаний. Для этого поступающая на них электроэнергия в 50 герц претерпевает следующие изменения:

    выпрямления;

    стабилизации;

    преобразования напряжения повышенной частоты.


В основу работы заложены те же принципы предыдущих конструкций за исключением того, что система управления на основе микропроцессорных плат формирует на выходе преобразователя выходное напряжение повышенной частоты в десятки килогерц.

Частотное преобразование на основе автоматических устройств позволяет оптимально регулировать работу электродвигателей в моменты пуска, торможения и реверса, а также удобно изменять скорость вращения ротора. При этом резко снижается вредное влияние переходных процессов во внешней электрической сети питания.

Сварочные инверторы

Основное назначение этих преобразователей напряжение состоит в поддержании стабильного горения дуги и легкого управления всеми ее характеристиками, включая поджиг.


С этой целью в конструкцию инвертора включены несколько блоков, осуществляющих последовательное выполнение:

    выпрямления трехфазного или однофазного напряжения;

    стабилизацию параметров фильтрами;

    инвертирование из стабилизированного постоянного напряжения высокочастотных сигналов;

    преобразование в/ч напряжения понижающим трансформатором для повышения величины сварочного тока;

    вторичное выпрямление выходного напряжения для формирования дуги у сварки.

За счет использования высокочастотного преобразования сигнала значительно снижаются габариты сварочного трансформатора и экономятся материалы для всей конструкции. обладают большими преимуществами в эксплуатации по сравнении со своими электромеханическими аналогами.

Трансформаторы: преобразователи напряжения

В электротехнике и энергетике по-прежнему для изменения амплитуды сигнала напряжения наибольшее распространение имеют трансформаторы, работающие на электромагнитном принципе.


Они имеют две или большее количество обмоток и , по которому передается магнитная энергия для преобразования входного напряжения в выходное с измененной амплитудой.

Поступающая по линиям электропередач энергия не всегда используется в чистом виде. Для выполнения специфических задач она преобразуется электротехническими устройствами, изменяющими один или несколько параметров – вид напряжения, частоту и другие.

Преобразователи электроэнергии: классификация

Эти устройства классифицируются по нескольким признакам:

  1. Виду преобразований.
  2. Типу конструкции.
  3. Управляемости.

Параметры, которые изменяются

Преобразованию подвергаются следующие параметры:

  1. Тип напряжения – из переменного в постоянное и наоборот.
  2. Амплитудные значения тока и напряжения.
  3. Частота.

Типы конструкций

Эти устройства подразделяются на электромашинные и полупроводниковые.

Электромашинные (вращательные) состоят из двух машин, одна – привод, а другая – исполнительное устройство. Например, для превращения переменного тока в постоянный используется асинхронный двигатель переменного тока (привод) и генератор постоянного (исполнитель). Их недостаток – большие габариты и масса. Кроме того, суммарный КПД технологической связки ниже, чем у одиночной электрической машины.

Полупроводниковые (статические) преобразователи, строятся на основе электротехнических схем, состоящих из полупроводниковых или ламповых элементов. Их КПД выше, размеры и масса небольшие, но качество электроэнергии на выходе невысокое.

Управляемые и неуправляемые

Если величина изменения параметра электрической энергии фиксированная, то используется неуправляемый преобразователь. Такие устройства применяются в первых каскадах блоков питания. Пример – силовой трансформатор, понижающий сетевое напряжение с 220 до 12 вольт.

Преобразователи с изменяемыми параметрами являются исполнительными устройствами в управляемых электротехнических цепях. Например, изменяя частоту питающего напряжения, регулируют частоту вращения асинхронных двигателей.

Преобразователи электроэнергии: примеры устройств

Преобразователи могут выполнять либо какую-то одну функцию, либо несколько.

Изменение типа напряжения

Те устройства, которые превращают переменный ток в постоянный называются выпрямителями. Действующие наоборот – инверторами.

Если это электромашинное устройство, то выпрямитель состоит из асинхронного двигателя переменного тока, вращающего ротор генератора постоянного. Входные и выходные линии электрического контакта не имеют.

Наиболее распространенных тип схемы статического выпрямителя – диодный мост. В нем четыре элемента (диода) с односторонней проводимостью, включенные встречно. После него обязательно ставят электролитический конденсатор, который сглаживает пульсирующее напряжение.

Существует гибридная конструкция, объединяющая электромашинный и статический выпрямители. Это автомобильный генератор, являющийся машиной переменного тока, статорные обмотки которого подключены к выпрямительному мосту с конденсатором.

Инверторные схемы применяются для запуска генератора незатухающих колебаний (мультивибратор), построенного на тиристорах или транзисторах. Они являются основой преобразователей частоты.

Изменение амплитудных значений

Это все виды трансформаторов – понижающих, повышающих, балластных.

Управляемые трансформаторы называются реостатами. Если они включаются параллельно источнику электроэнергии, то изменяют напряжение. Последовательно – ток.

Для поглощения тепла, выделяющегося при работе мощных высоковольтных сетевых трансформаторов, применяются системы жидкостного (масляного) охлаждения.

Изменение частоты

Частотные преобразователи бывают как электромашинными (вращательными), так и статическими.

Исполнительным механизмом вращательных преобразователей частоты является высокочастотный асинхронный трехфазный генератор. Его ротор вращает электромотор постоянного или переменного тока. Как и у выпрямителя вращательного типа, входные и выходные линии у него не имеют электрического контакта.

Инверторные схемы, используемые в преобразователях частоты статического типа, бывают управляемые и неуправляемые. Повышение частоты позволяет уменьшить габариты устройств. Трансформатор с рабочей частотой в 400 Гц в восемь раз меньше, чем работающий от 50 Гц. Это свойство используется для построения компактных сварочных инверторов.

Похожие статьи